
Defining and Measuring Supercomputer Reliability,
Availability, and Serviceability (RAS)

Jon Stearley <jrstear@sandia.gov>

Sandia National Laboratories??

Albuquerque, New Mexico

Abstract. The absence of agreed definitions and metrics for supercomputer RAS
obscures meaningful discussion of the issues involved and hinders their solution.
This paper seeks to foster a common basis for communication about supercom-
puter RAS, by proposing a system state model, definitions, and measurements.
These are modeled after the SEMI-E10 [1] specification whichis widely used in
the semiconductor manufacturing industry.

1 Impetus

The needs for standardized terminology and metrics for supercomputer RAS begins
with the procurement process, as the below quotation excellently summarizes:

“prevailing procurement practices are ... a lengthy and expensive undertak-
ing both for the government and for participating vendors. Thus any technically
valid methodologies that can standardize or streamline this process will result
in greater value to the federally-funded centers, and greater opportunity to fo-
cus on the real problems involved in deploying and utilizingone of these large
systems.” [2]

Appendix A provides several examples of “numerous general hardware and software
specifications” [2] from the procurements of several modernsystems. While there are
clearly common issues being communicated, the language used is far from consistent.
Sites struggle to describe their reliability needs, and vendors strive to translate these
descriptions into capabilities they can deliver to multiple customers. Another example
is provided by this excerpt:

“The system must be reliable... It is important to define whatwe mean by
reliable. We do not mean high availability... Reliability in this context means
that a large parallel job running for many hours has a high probability of suc-
cessfully completing. It is measured by the mean time between job failures.
Note that the system can undergo a failure that does not lead to loss of a
job without affecting reliability - this is important to developing reliability en-
hancement strategies. A related requirement would be that if the system under-
goes a failure that is local, only jobs using that local resource are affected. This

?? Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-94AL85000.

2

kind of aspect of reliability we also call resiliency. Note that a system can have
very high availability and not be reliable for our purposes.It is, by contrast,
unlikely that a system that has low availability could have high reliability.” [3]

Standardized terms and measurements for supercomputer RASwill streamline the pro-
curement process.

Once a system is operational, even a simple phrase like “the system is up” can
have very different meanings between who is speaking, who ishearing, and what sys-
tem is being described. Categorizing the type and impact of undesired system events
is similarly unclear - for example: is intermittent response from an I/O node an inter-
rupt or a failure, how can its effect on users measured, etc? In both operational and
design review, it is difficult to have meaningful discussions due to inability to agree
on terminology. Making complex supercomputers reliable isdifficult even with clear
communication, but unclear communication further complicates the process and delays
progress. Standardized terms and measurements will facilitate practical improvements
in RAS performance.

Not all sites track RAS data for their supercomputer(s), andcomparing data from
those sites who do requires careful review of their definitions and calculations. For
example, both NERSC and LLNL do an excellent job at tracking RAS data (NERSC
data is public athttp://www.nersc.gov/nusers/status/AvailStats/ ,
LLNL provided extensive data to me upon request) - matching words and metric names
are used, but it is unclear if the definitions and calculations also match exactly. Ac-
curate RAS performance comparisons between these sites is possible via very careful
review, but standardization would ease this process and benefit the high-performance
computing (HPC) community as a whole.

All systems reach a point where it is more cost-effective to replace them than to
continue to operate them. The reliability, availability, serviceability, utilization, cost
effectiveness, (etc) of existing systems are compared to what can be procured - in most
cases without clear terminology or quantitative metrics for either. And so the cycle
continues.

It is not uncommon for users of supercomputers to express frustrations regarding
system reliability - even when the cost of their systems ranges in the tens of millions
of dollars. Accurate quantitative assessment of supercomputer RAS performance is ar-
guably impossible without agreed-upon definitions and measurements - their lack is ex-
tremely expensive in time, effort, and money. In response tosimilar needs for standard-
ization, the semiconductor manufacturing industry has developed the “Specification for
Definition and Measurement of Equipment Reliability, Availability, and Maintainabil-
ity” (SEMI-E10 [1]). The remainder of this document is largely modeled1 after that
Specification, and proposes a standardized system state model, definitions, and mea-
surements for supercomputer RAS.

1 Guidance was provided at Sandia’s 2004 CSI External Reviewsthat relevant lessons and prac-
tices from the manufacturing industry be leveraged to improve supercomputer RAS.

3

2 System State Model

It would take an incredibly dense state diagram to visualizeall the possible states a
supercomputer and its workload can reach. Navigating this diagram during system de-
bugging is at least intimidating, and can feel humorously hopeless at worst:

“A computer is in one of two situations. It is either known to be bad or it is
in an unknown state.” - Mike Levine (PSC)

Clear definitions of equipment states are a prerequisite to accurate RAS measurements;
this document defines six basic states into which all equipment conditions and periods
of time must fall (see Figure 1).

Fig. 1.Hierarchy of Equipment States (basic states in gray)

Total Time

Operations
Time

Uptime Downtime

Production
Time

Unscheduled
Downtime

Scheduled
Downtime

Non-Scheduled
Time

Standby
Time

Awaiting
 production jobs

(Item IS
 operational)

(Item IS NOT
 operational)

(Item IS
 available)

(Item IS NOT
 available)

(Item IS
 available for
 production
 use)

Productive
Time

Executing
 production jobs

Engineering
Time

Software, Hardware,
 or Process
 engineering,
 test, or
 qualification

Preventative Maintenance
System Software Upgrades
Minor Hardware Replacements
Facilities related

Repair
 Diagnosis
 Corrective action
 Verification
Facilities related

Installation
Rebuild
Major Upgrades
Non-operational Holidays

Boldfaceis used below for words defined in section 3.

2.1 PRODUCTIVE STATE

The time (productive time) when anitem is performing computations on behalf of pro-
duction users, for example:

– (thesystemis) executingjobs for one or more production users
– (thenode is) executing ajob for a production user

2.2 STANDBY STATE

The time (standby time) when an item isavailable to production users, but not in a
productive state due to workload conditions, for example:

– no jobs in batch queue
– jobs in batch queue require morenodesthan are currently in standby state, or are

delayed due to queue priority configuration

4

2.3 ENGINEERING STATE

The time (engineering time) when anitem is available to system engineering users, for
example:

– system software engineering and qualification (e.g. operating system software, batch
system software, etc)

– hardware engineering and evaluation (e.g. involving different hardware settings or
configurations, newcomponents, etc)

– process engineering (e.g. refining of support processes such as booting, shutdown,
problem isolation, etc)

2.4 SCHEDULED DOWNTIME STATE

The time (scheduled downtime) when anitem is notavailable due to planned events,
for example:

– preventative maintenance
– hardware or software upgrades
– system verification (testing in order to verify that it is functioning properly)
– maintenance delay - time waiting for maintenance personnelor parts (maintenance

delay may also be due to an administrative decision to postpone maintenance)
– facilities related (power, cooling, etc)

2.5 UNSCHEDULED DOWNTIME STATE

The time (unscheduled downtime) when anitem is not available due to unplanned
events, for example:

– repair (including time spent for diagnosis, corrective action, and verification of re-
pair)

– maintenance delay
– facilities related (power, cooling, etc)

2.6 NON-SCHEDULED STATE

The time (non-scheduled time) when anitem is not scheduled to be utilized by produc-
tion or system engineering users, for example:

– initial installation
– rebuilds and upgrades which are beyond the scope of scheduled downtime
– holidays during which the item is not expected to be operational

5

2.7 State Hierarchy

Time spent in the six basic equipment states is hierarchically organized as follows (see
Figure 1):

TOTAL TIME all time (at the rate of 24hrs/day, 7 days/week) during the period be-
ing measured. In order to have a valid representation of total time, all six basic
equipment states must be accurately accounted for.

OPERATIONS TIME total time minus non-scheduled time.
UPTIME time when anitem is available; the sum of engineering and production time.
DOWNTIME time when anitem is notavailable; the sum of scheduled and unsched-

uled downtime.
PRODUCTION TIME 2 the time when anitem is available to production users; the

sum of productive and standby time.

3 Definitions

This section proposes standardized definitions of terms which are commonly used, but
not commonly agreed upon. Great effort has been made to utilize established definitions
wherever possible. Only those terms deemed necessary are given (consult referenced
dictionaries for more information).

3.1 RAS Terminology

Reliability the probability that an item3 will function without failure under stated con-
ditions for a specified amount of time [4]. “Stated conditions” indicates prerequisite
conditions external to the item being considered. For example, a stated condition
for a supercomputer might be that power and cooling must be available - thus a
failure of the power or cooling systems would not be considered a failure of the
supercomputer itself.

Availability the fraction of a time period that an item is in a condition to perform its
intended function upon demand [1] (“available” indicates that an item is in this
condition); availability is often expressed as a probability [4].

Serviceability 4 the probability that an item will be retained in, or restoredto, a condi-
tion to perform its intended function within a specified period of time [1].

Maintenance the act of sustaining an item in or restoring it to a conditionto perform
its intended function [1], usually during scheduled time.

2 “Production time” herein is analogous to “manufacturing time” in SEMI-E10.
3 The use of the term “item” intentionally allows for the calculation of reliability for individual

components or for the system as a whole. Similarly for other uses of the term “item” in this
document.

4 Serviceability (widely used in the supercomputer HPC community) is herein defined as an
exact synonym for the decades-old term “maintainability” (widely used in engineering and
manufacturing [4,1]). Perhaps “maintainability” is not used in the HPC community in order to
avoid an acronym conflict with Random Access Memory (RAM)?

6

Repair the act of restoring an item to a condition to perform its intended function.
Utilization the percentage of a time period that an item actually performs its intended

function [1].
System Downtime Eventa detectable occurrence significant to the system which causes

it to transition from an uptime state to a downtime state (states are defined in sec-
tion 2), regardless of why the transition is made (e.g. scheduled downtime, system
failure, administrative decision, etc) [1].

3.2 Foundational Terminology

Supercomputer any of the group of computers that have the fastest processing speeds
available at a given time [4]. Generally speaking, the intended function of a super-
computer is to quickly perform computations for users.

System a collection of components organized to accomplish a specific function or set
of functions [4]. When dealing with a specific supercomputer, “the system” means
“the (majority of components of the) supercomputer” - for example, a site may not
consider “the system” to be in a production status until at least 95% of it’snodes
(defined below) are in a production status.

Component one of the parts that make up a system. A component may be hardware or
software and may be subdivided into other components. [4]

Item an all-inclusive term to denote any level of unit, includingsystem and component
[4].

Processa set of interrelated or interacting activities which transforms inputs into out-
puts [5].

Event any occurrence which affects the state of an item [4].
Interrupt the suspension of a process to handle an event external to theprocess [4].

See section 3.3 for specific types of supercomputer interrupts.
Failure the termination of the ability of an item to perform a required function [4].

External corrective action is required in order to restore the ability of an item to
perform a required function, e.g. manual reboot, repair, orreplacement.

– Failures regard items, interrupts regard work (being performed by the items).
– It is important to categorize interrupts and failures in ways that facilitate the res-

olution of problems and improve overall system performance. Effective application
of this specification requires agreement on such categorization.

Fault an accidental condition that causes an item to fail to perform its required function
[4].

3.3 Supercomputer Terminology

Job a user-defined unit of work that is to be accomplished by a computer [4]. For a job
processed by a batch system, the following distinct stages are defined:

1. submission- a request is made for fast computation.
2. wait - delay may occur until sufficient resources are available tofulfill the request,

including consideration of queuing priorities.

7

3. shell-execution- resources are allocated to fulfill request, a shell is invoked, and
scripted commands may take place such as data preprocessing.

4. application-execution- computations are performed
5. cleanup- resources are made available for other requests, optionally: scripted com-

mands such as post-processing, delivery of results, and notification of job comple-
tion.

Jobs not processed by a batch system generally only consist of an application-execution
stage. An “active job” is a job which is in shell-execution, application-execution, or
cleanup stages.

Job Kill the expected interruption of an active job.
Job Interrupt (IJob) the unexpected interruption of an active job.
System Interrupt (ISystem) the unexpected interruption of all active jobs.
System Failure (FSystem) an unscheduled event requiring thatthe systementer a down-

time status beforeany componentmay transition into a productive status (e.g. the
system must be repaired before new jobs can execute).

Service Interrupt (IService) any event that disrupts full service to users, including
system transitions out of production or engineering status, or any drop below a
promised number of compute nodes [6]. For example, from the perspective of pro-
duction users, any time the system is not capable of running ajob (sized at the
intended function of the system) is a service interrupt.

Component Failure the failure of a component for any reason other than design flaws
[4], which may or may not result in a job or system interrupt, or system failure.

Node a hardware component consisting of one or more5 CPUs and capable of commu-
nicating with other nodes in order to perform parallel computations.

Nodehour 6 a unit of work equal to one node computing for one hour.
Wallclock Time regular time as displayed on a wallclock.
Production Nodehours the sum of all time on all nodes in production state (see Sec-

tion 2.7), e.g. commonly estimated as production time (in hours) times the total
number of nodes in the system.

Productive Nodehours the sum of all time on all nodes in a productive state (see Sec-
tion 2.1), e.g. job duration times job size (the number of nodes the job utilized).

Field Replaceable Unit (FRU) 7 a hardware component that can be easily replaced in
the field [4].

4 Measurements

“In the history of science and technology, it is clear that progress can be
strongly correlated with the availability of quantitativedata. ... The substitution
of arm waving and hype has been a major contributor to the tragedies in the
field...” [7]

5 “Nodehours” is a commonly used term and is thus used herein. However, the use of “processor-
hours” may be justified in systems containing more than one CPU.

6 “nodehour” is used instead of “node-hour” in order to avoid ambiguity in equations.
7 FRU herein is analogous to consumables in SEMI-E10.

8

Quantitative understanding of performance is a prerequisite for continual performance
improvements ([5] sections 0.2{f,g}). Motivations to collect metrics can vary widely;
the objectives of this document are:

1. to work towards the identification of those metrics which are truly useful in im-
proving RAS performance, and

2. to facilitate effective communication about RAS performance (enabling clear re-
quirements, accurate systems comparisons, etc).

Because scale (number of nodes) is a principal feature of supercomputers, it is useful
to define metrics based on wallclock time (denoted herein by “T”) and nodehour time
(denoted herein by “N”). All references to “time” or “nodehours” in below equations
are cumulative over the period of calculation, e.g. “production time” below means the
sum of all wallclock hours spent in a production state duringthe period of time being
considered.

Rigorous tracking of RAS events (e.g. node status transitions, job interrupts, etc) is
a prerequisite for quantitative understanding of RAS performance. Tracking methods
are beyond the scope of this document.

4.1 Reliability

Reliability is often [8] calculated asR(t) = e−λt whereλ = 1

MTBF
is theconstant

failure rate (uses an exponential random variable model). Iam not confident that su-
percomputer failure rates are constant, and therefore do not use this model for calcu-
lating reliability. Similarly for rates of repair in the calculation of serviceability. This
document proposes standardization of low-level metrics only - selection of appropriate
models (e.g. Poisson random variable?) for high-level metrics is left for future work.

Careful classification of events (e.g. interrupt versus failure) and their scope of im-
pact (e.g. job versus system) enables clear communication about system reliability.
Readers are encouraged to review these distinctions and consider their practical rele-
vance.

Only uptime is included in reliability calculations (downtime is included in avail-
ability calculations). Furthermore, the below metrics focus on production time - similar
metrics focused on engineering time may be appropriate for some systems (e.g. see
System Production and Engineering Availability in Section4.2).

Mean Time and Nodehours Between Job Interrupts It is very common for users
to form estimates (and expectations) of how often they experience interrupts. It is also
common however for these reports to vary widely. This metricconveys the time between
such undesirable events.

MTBIJob = production time

number of job interrupts

Inconsistent reports can result if this metric is (incorrectly) estimated using uptime
pertaining to only a subset of jobs in the numerator rather than system-wide uptime. For
example, a user who runs ten one-hour jobs of which five interrupt, may erroneously

9

report thatMTBIJ = 2 hours/interrupt (=10 hours / 5 job interrupts). The truth
may however be that these were the only interrupts experienced on the system over
five full days of service, thus yieldingMTBIJ = 24 hours/interrupt (=5*24/5).
Comparison of system-wideMTBIJob as above to a subsetMTBIJob (e.g. per-user
or per-application) may be useful towards identifying factors correlated with interrupts.

A key weakness ofMTBIJob however, is that it doesnot convey any information
about theamount of workwhich can be accomplished. A metric based on computational
work (nodehours) is more informational:

MNBIJob = productive nodehours

number of job interrupts

MNBIJob provides insight into how much computational work can be expected to
complete without interrupt, and may be useful to users in estimating the job size and
duration most likely to complete. A plot ofMTBIJob as a function of job size would
be useful - and an informational accompaniment to application scaling efficiency plots.

Contour plots of the probability of jobs completing withoutinterrupt (with job size
and duration as horizontal and vertical axes respectively)may also be useful (e.g. ag-
gregating all jobs on the system over a period of time).

Mean Time and Nodehours Between Node FailuresNode failures (e.g. including
events requiring reboot, repair, or replacement of nodes) are a common cause of job
interrupts - these metrics convey the average time and productive work between these
events.

MTBFNode = production time

number of node failures

MNBFNode = productive nodehours
number of node failures

Mean Time and Nodehours Between System FailuresSystem failures (e.g. includ-
ing necessary unscheduled system reboots) are a primary undesirable event to nearly
everyone (and are consistently evident in Appendix A). These metrics convey the aver-
age amount of time and productive work between such events.

MTBFSystem = production time

number of system failures

MNBFSystem = productive nodehours

number of system failures

Mean Time and Nodehours Between Service InterruptsService interrupts are of
principal concern to users - these metrics convey the average time and productive work
between such events. They are aggregate metrics, affected by both scheduled and un-
scheduled service interrupts.

MTBIService = production time
number of service interrupts

MNBIService = productive nodehours

number of service interrupts

10

4.2 Availability

Total System Availability (%) This calculation measures the percentage of a time
period that the system was available. The key feature of thismetric is the use of total
time (all states) in the denominator - for many users what matters isthat the system be
available, notwhy it was not.

Total AvailabilitySystem(%) = uptime

total time
∗ 100

Scheduled System Availability (%) This calculation measures how fully uptime ex-
pectations are met during a time period. The key feature of this metric is that quantitative
expectations exist (e.g. uptime and downtime schedules areset at the beginning of the
time period).

ScheduledAvailabilitySystem(%) = uptime−downtime
scheduled uptime

∗ 100

System Production and Engineering Availability (%) For systems having both sig-
nificant engineering and production purposes, separate measurements of time spent ful-
filling each function may be useful (systems without such dual-purposes are sufficiently
served by Total System Availability above).

Production AvailabilitySystem(%) = production time

operations time
∗ 100

Engineering AvailabilitySystem(%) = engineering time
operations time

∗ 100

4.3 Serviceability

Calculation of these metrics on an overall system basis as well as per failure type basis
is useful towards quantitative understanding of the practical impact of each failure type.
Again, this requires the establishment of failure categories and accurate recording of
events.

Mean Time To Repair This calculation is intended to reflect the average amount of
time it takes to recover from a failure.

MTTR = unscheduled downtime
number of failures

Mean Nodehours To Repair This calculation measures the average computational
ability lost per failure. Example usage of this metric wouldbe to measure the scope of
impact of failure events which cause portions of compute nodes to become unavailable,
rather than the entire system.

MNTR = unscheduled downtime nodehours
number of failures

11

Mean time to Boot System Wallclock time to boot the complete system is a useful
metric [9], whose importance increases with the number of times the system must be
booted (e.g. the number of system failure events requiring asystem reboot).

MTTBSystem = sum of wallclock time booting the system

number of boot events

4.4 Utilization

Total System Utilization This calculation is intended to reflect overall production uti-
lization of the system. Because it uses total time in the denominator, it is a meaningful
aggregate of reliability, availability, and serviceability.

Total UtilizationSystem(%) = productive time

total time
∗ 100

Production Time System Utilization (%) This calculation measures the percentage
of a system’s available computational ability that was actually utilized. This isnot a
RAS metric- it is entirely a function of workload and queuing configuration - but is
included here for completeness.

Production T ime UtilizationSystem(%) = productive nodehours
production nodehours

∗ 100

5 Implementation

This document is intentionally platform-independent - it seeks to foster effective com-
munication about supercomputer RAS. There are however multiple characteristics of
Linux which are well aligned with this objective, and thus suggest it as a good candi-
date as an implementation platform:

– Linux is increasingly present in supercomputers (increasingly becoming a stan-
dard).

– Linux culture has strong aspects of cost-effectiveness andopen, standardized im-
plementations.

– Multiple packages are available which collect and present detailed system statistics
from large sets of Linux nodes (e.g. Ganglia, Supermon).

Beyond the adoption of agreed-upon terminology, the following are needed towards
practical implementation of this document:

1. The intended function(s) of the system and their time proportions must be clearly
enumerated. For example, what exactly is the intended balance of the system being
considered for production use, system-development use, etc?

2. Interrupt and failure modes must be clearly categorized,including their scope of im-
pact. Key to this effort is keeping in mind “from who’s perspective did this fail/etc?”
Categorization hierarchies should be enumerated so that new (or rare) events can
be accurately accounted for. Sharing of such categorization hierarchies and policies
will benefit the HPC community.

3. Low-level statistics must be meaningfully aggregated into high-level metrics ap-
propriate for inter-system and inter-site comparison.

12

6 Conclusions

It is easy for supercomputer users and administrators to have deep understanding of
each other’s frustrations regarding reliability, availability, and serviceability (RAS), but
effective collaboration towards improvement is hindered by the lack of standardized
terminology and measurements. This lack also increases thecost of supercomputers in
all phases (design, procurement, operation, and retirement). Supercomputers today are
complex, expensive, and relied upon - each in increasing measure. Significant improve-
ments in system RAS are a prerequisite for sustained computation by future even larger
and complex supercomputers.

RAS concepts are well understood in other industries and theHPC community
would be wise to leverage these investments to improve supercomputer RAS. This doc-
ument is largely modeled after the SEMI-E10 semiconductor manufacturing SEMI-E10
specification, and proposes a standardized system state model, definitions, and measure-
ments for supercomputer RAS.

Acknowledgments

Sue Kelly, Bob Ballance, Doug Doerfler, Nathan Dauchy, Ron Brightwell, Neil Pundit,
Mike Davis, Tim Ingebritson, Jim Ang, and William Kramer have provided reviews
and/or contributions to this document - thank you! Thanks also to Mark Seager and
Dave Fox for providing LLNL RAS data!

Postscript

Successful standards must be developed and established by aconsensus-based process.
Feedback on this document and contribution toward this effort are hereby solicited from
any interested party.

Revision

Revision 1.35 of this document is published in the proceedings of the 6th LCI Inter-
national Conference on Linux Clusters (April 2005). This is$Revision: 1.44 $, $Date:
2005/04/21 21:07:41 $. Updated revisions are available athttp://www.cs.sandia.
gov/~jrstear/ras or by contacting the author.

A Procurement Specification Excerpts

A.1 Sandia National Laboratories

“An Investigation into Reliability, Availability, and Serviceability (RAS) Features for
Massively Parallel Processor Systems” by Kelly and Ogden [10] provides additional
RAS details on Sandia Systems.

13

Red Storm [11]

– “There shall not be any single-point of failure that can cause a system interrupt for
high failure rate components such as power supplies, processors, compute nodes,
3-D mesh primary communications network, or disks. It is acceptable for the ap-
plication executing on a failed processor or node to fail butwhen this happens
applications executing on other parts of the system shall not fail.”

– (regarding nodes responsible for booting the system) “There shall be an automatic
fail over mechanism to prevent a system interrupt due to the loss of a boot node.”

– “Mean time between Interrupt (MTBI) for full system shall begreater than 50 hours
for continuous operation of the full system on a single application code. This means
that the full system must be able to run continuously on an application using the full
system for 50 hours without any hardware component failuresor system software
failures that cause an interrupt or failure of the application code.”

– “MTBI for the full system, as determined by the need to rebootthe system, shall be
greater than 100 hours of continuous operation. This means that the system will be
continuously operational for 100 hours with at least 99% of the system resources
available and all disk storage accessible.”

– “FRU (Field Replaceable Units) failures shall be able to be determined, isolated,
and routed around without system shutdown.”

ICC (Linux cluster) [12]

– (TAC3) “Each cluster shall be up and processing applications a minimum of 90%
of the (test) wall clock time.”

– (TAC4) “Each cluster will be shutdown at least twice and rebooted during this
evaluation period. One test will be a complete power down condition. Each cluster
must be production ready within one hour following return ofpower. Reboot of the
cluster from shutdown without power loss shall be less than 30 minutes. Production
ready clusters must have at least 95% of nodes available to run applications within
these time limits.”

– (HAM7) “Management of each cluster must have less than 1 percent impact on the
performance or reliability of the cluster.”

– (HAM15) “The clusters must be designed to prevent a single point of failure. It
is acceptable for an application using a failed component tofail, but this failure
should not effect applications executing on other parts of the cluster that have not
failed.”

– “the key criteria for measuring reliability is Mean Time Between Interrupts (MTBI)
of an application. System availability, or percentage of the time the system is "up",
is of secondary importance. In fact, it is possible to have a machine with high avail-
ability that is not useful for Sandia’s problems because itsMTBI is too short.”

– (SPM1) “The Mean Time Between Interrupt (MTBI) for a single application run-
ning on one-half of the entire system shall be greater than 48hours of continuous
operation.”

– (SPM2) “The MTBI for the entire system, as defined by the need to reboot the
system, shall be greater than 336 hours of continuous operation.”

14

– (POM1) “Each cluster shall provide a simple accounting and utilization tracking
facility capable of supporting a subscription process.”

– (CMD11) “Each cluster should support comprehensive monitoring of the state of
its components and provide real time notification of equipment malfunction (e.g.,
loss of nodes, file system down, etc.).”

A.2 Lawrence Livermore National Laboratories

ASC Purple [13]

– “User app spanning 80% of the SMPs will complete a run with correct results that
utilizes 200hrs of system+user CPU time in at most 240 wall clock hours without
human intervention. User app spanning 30% will complete 200hrs in 220 wall clock
hours w/o human intervention.”

– “System hw and sw will execute 100 hour capability jobs (jobsexercising at least
90% of the computational capability of the system) to successful completion 95%
of the time. If application termination due to system errorscan be masked by auto-
matic system initiated parallel checkpoint/restart, thensuch failures will not count
against successful application completion. That is, if thesystem can automatically
take periodic application checkpoints and upon failure dueto system errors auto-
matically restart without human intervention, then these interruptions to application
progress do not constitute failure of an application to successfully complete.”

– “Over any 4 week period, the system will have an effectiveness level of at least 95%.
Effectiveness level is computed as the average of period effectiveness levels. ...
Period effectiveness level is computed as University operational use time multiplied
by max [0,(p-2d)/p] divided by the period wall clock time. Where p is the number
of CPUs in the system and d is the number disabled.”

– “SMP or node or fru failures will be determined by supplied diagnostic utils, iso-
lated, and routed around w/o system shutdown.”

– “Failure of a single component such as cpu, single smp, or single comm. channel
will not cause the full system to become unavailable.”

– ... “the SMPs will be able to tolerate failures through graceful degradation of per-
formance where the degradation is proportional to the number of FRUs actually
failing.”

Thunder (Linux Cluster) [14]

– (TR-1) “nodes will be mechanically designed so that complete node disassembly
and reassembly can be accomplished in less than 20 minutes bya trained techni-
cian.”

– (MTBF) “The Offeror will provide the MTBF calculation for each FRU and node
type. The Offeror will use these statistics to calculate theMTBF for the provided
aggregate Thunder cluster hardware. This calculation willbe performed using a
recognized standard. Examples of such standards are Military Standard (Mil Std)
756, Reliability Modeling and Prediction, which can be found in Military Hand-
book 217F, and the Sum of Parts Method outlined in Bellcore Technical Reference

15

Manual 332. In the absence of relevant technical information in the proposal, the
University will be forced to make pessimistic reliability,availability, and service-
ability assumptions in evaluating the proposal.”

A.3 Los Alamos National Laboratories

Q [10]

– “Hot swap of FRU”
– “Node failures shall be determined, isolated, and routed around w/o system shut-

down. Reconfig system around failed node for continued operation from a network
workstation.”

– “Failure of a single component such as single node, disk, or comm. channel shall
not cause the full system to become unavailable.”

– “Soft memory component failure in user memory shall not cause the node to fail.”

References

1. Semiconductor Equipment and Materials International. Specification for definition and mea-
surement of equipment reliability, availability, and maintainability. SEMI E10-0304, 1986,
2004.

2. Steven Ashby (LLNL), David H. Bailey (LBNL), Maurice Blackmon (UCAR),
Patrick Bohrer (IBM), Kirk Cameron (U. SC), Carleton DeTar (U. Utah), Jack Dongarra (U.
Tenn.), Douglas Dwoyer (NASA Langley), Peter Freeman (NSF), Ahmed Gheith (IBM),
Brent Gorda (LBNL), Guy Hammer (DOD-MDA), Wesley Felter (IBM), Jeremy Kepner
(MIT/LL), David Koester (MITRE), Sally McKee (Cornell), David Nelson (DOE), Jef-
frey Nichols (ORNL), Michael Vahle (Sandia), Jeffrey Vetter (LLNL), Theresa Windus
(PNNL), and Patrick Worley (ORNL). Performance modeling, metrics and specifications:
Report of HECRTF working group six. USC CSCE TR-2003-016, August, 2003.

3. Ron Brightwell, William Camp, Benjamin Cole, Erik DeBenedictis, Robert Leland, Jim
Tomkins, and Arthur B. Maccabe. Architectural specification for massively parallel com-
puters - an experience and measurement-based approach.Concurrency and Computation:
Practice and Experience, (Special Issue) The High Performance Architectural Challenge:
Mass Market Versus Proprietary Components, September 2004.

4. Standards Coordinating Committee 10 (Terms and Definitions) Jane Radatz (Chair).The
IEEE Standard Dictionary of Electrical and Electronics Terms, volume IEEE Std 100-1996.
IEEE Publishing, 1996.

5. The International Organization for Standardization (ISO). Quality management systems -
fundamentals and vocabulary. ISO-9000, 2000.

6. W. T. Kramer. How are we doing? A self-assessment of the quality of services and systems
at NERSC, 2001. LBNL-47712.

7. David J. Kuck. High performance computing challenges forfuture systems. from High-End
Computing Revitalization Task Force (HECRTF) presentation by Alan Laub and John Grosh
on November 21, 2003.

8. Enrique Vargas Sun Microsystems Enterprise Engineering. High availability fundamentals.
Revision 01, November 2000. http://www.sun.com/blueprints.

9. Adrian Wong, Leonid Oliker, William Dramer, Teresa Kaltz, and David Bailey. ESP: A sys-
tem utilization benchmark. InProceedings of the Supercomputing 2000 Conference, 2000.

16

10. Suzanne M. Kelly and Jeffry B. Ogden. An investigation into Reliability, Availability, and
Serviceability (RAS) features for massively parallel processor systems. SAND2002-3164,
2002.

11. ASC red storm acceptance test plan. Cray and Sandia National Laboratories internal docu-
ment.

12. Institutional computing cluster (ICC) - statement of work. RFQ 5031, Sandia National Lab-
oratory.

13. Purple - statement of work (B519700). UCRL-PROP-145639DR, University of California
Lawrence Livermore National Laboratory.

14. Thunder - statement of work (B532746). UCRL-MI-200098,University of California
Lawrence Livermore National Laboratory.

